如图,原长分别为L1和L2,劲度系数分别为k1和k2的轻质弹簧竖直地悬挂在天花板上,两弹簧之间有一质量为m1的物体,最下端挂着质量为m2的另一物体,整个装置处于静止状态.现用一个质量

问题描述:

如图,原长分别为L1和L2,劲度系数分别为k1和k2的轻质弹簧竖直地悬挂在天花板上,两弹簧之间有一质量为m1的物体,最下端挂着质量为m2的另一物体,整个装置处于静止状态.现用一个质量为m的平板把下面的物体竖直地缓慢地向上托起,直到两个弹簧的总长度等于两弹簧原长之和,这时托起平板竖直向上的力是多少?m2上升的高度是多少?

当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,
对m1受力分析得:m1g=k1x+k2x…①
对平板和m2整体受力分析得:
F=(m2+m)g+k2x…②
①②联解得托起平板竖直向上的力F=mg+m2g+

k2m1g
k1+k2

未托m2时,上面弹簧伸长量为x1=
(m1+m2)g
k1
…③
下面弹簧伸长量为x2=
m2g
k2
…④
托起m2时:m1上升高度为:h1=x1-x…⑤
m2相对m1上升高度为:h2=x2+x…⑥
m2上升高度为:h=h1+h2…⑦
③④⑤⑥⑦联解得h=
m2g
k2
+
(m1+m2)g
k1