如图所示,原长分别为L1和L2,劲度系数分别为k1、k2的轻弹簧竖直悬挂在天花板上,两弹簧之间有一质量为m1的物体,最下端挂着质量为m2的另一物体,整个装置处于静止状态,求: (1)这

问题描述:

如图所示,原长分别为L1和L2,劲度系数分别为k1、k2的轻弹簧竖直悬挂在天花板上,两弹簧之间有一质量为m1的物体,最下端挂着质量为m2的另一物体,整个装置处于静止状态,求:

(1)这时两弹簧的总长.
(2)若用一个质量为M的平板把下面的物体竖直缓慢的向上托起,直到两弹簧的总长度等于两弹簧的原长之和,求这时平板受到下面物体的压力.

(1)以m1m2整体为研究对象进行受力分析,根据平衡条件有:k1△x1=m1g+m2g ①
以m2为研究对象,有:m2g=k2△x2  ②
两弹簧的总长L=L1+L2+△x1+△x2   ③
联立①②③得:L=L1+L2+

m1g+m2g
k1
+
m2g
k2

(2)当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,
对m1受力分析得:m1g=k1x+k2x…①
对平板和m1整体受力分析得
受力分析得:m1g=k1x+k2x…①
对平板和m1整体受力分析得:
FN=m2g+k2x…②
根据牛顿第三定律,有
FN′=FN…③
解得:FN′=
k2
k1+k2
m1g+m2g
答:(1)两弹簧的总长L1+L2+
m1g+m2g
k1
+
m2g
k2

(2)平板受到下面物体的压力为
k2
k1+k2
m1g+m2g.