已知(x+y)^2n=1/8,(x-y)^n=4,求[(x+y)(x-y)]^4n的值

问题描述:

已知(x+y)^2n=1/8,(x-y)^n=4,求[(x+y)(x-y)]^4n的值

(x+y)^(2n)=1/8,则:
(x+y)^(4n)=(1/8)²=1/64
(x-y)^n=4,则:
(x-y)^(4n)=4^4=64
则:
[(x+y(x-y)]^(4n)=[(x+y)^(4n)]×[(x-y)^(4n)]=1