用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.
问题描述:
用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.
答
三个数分别是954,873,621.
答:这三个数分别是954,873,621;
故答案为:954,873,621.
答案解析:1+2+3+…+9=45=9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、18、18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.
考试点:数的整除特征.
知识点:解答此题的关键是先通过题意,根据数的整除特征进行分析,进而得出结论.