(2008•和平区三模)若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线y=x-1对称,动圆P与圆C相外切且直线x=-1相切,则动圆圆心P的轨迹方程是(  ) A.y2+6x-2y+2=0 B.y2-2x+2y=0 C.y2

问题描述:

(2008•和平区三模)若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线y=x-1对称,动圆P与圆C相外切且直线x=-1相切,则动圆圆心P的轨迹方程是(  )
A. y2+6x-2y+2=0
B. y2-2x+2y=0
C. y2-6x+2y-2=0
D. y2-2x+2y-2=0

圆x2+y2-ax+2y+1=0的圆心(

a
2
,−1),
因为圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,
所以(
a
4
,−
1
2
)满足直线y=x-1方程,解得a=2,
设圆心P到直线x=-1的距离等于r,P(x,y ),则由题意有可得 PC=1+r,
(x−1)2+(y+1)2
=1+1+x,化简可得 y2-6x+2y-2=0,
故选C.