在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知向量m=(cosB,-cosA),向量n=(2c+b,a)且向量m∥向量n(1)求sinB+sinC的取值范围(2)若a=4根号3,b+c=8,求△ABC的面积
问题描述:
在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知向量m=(cosB,-cosA),向量n=(2c+b,a)且向量m∥向量n
(1)求sinB+sinC的取值范围
(2)若a=4根号3,b+c=8,求△ABC的面积
答
(1)依题意:cosBa=-cosA(2c+b) ∴sinAcosB=-cosA(2sinC+sinB) ∴cosA=-1/2 ∴A=2π/3 ∴B+C=60° ∴ 原式=sinB+sin(60°-B)=sin(B+60°)∈(√3/2,1]
(2)cosA=(b^2+c^2-16)/(2bc)=-1/2 得bc=48 ∴S=1/2 * bc * sinA=12√3
答
∵向量m∥向量n,∴cosB、cosA均不为0,且-cosB/cosA = (2c+b)/a = (2sinC+sinB)/sinA∴-sinAcosB = 2sinCcosA + sinBcosA ,∴2sinCcosA + sin(A+B) = 0 = sinC·(1 + 2cosA)∵C是内角,∴sinC≠0,∴cosA = -1/2,A = 2...