已知b分之a=d分之c(b+d不=0,b-d不=0),求证:(a-c)分之(a+c)=(b-d)分之(b+d)
问题描述:
已知b分之a=d分之c(b+d不=0,b-d不=0),求证:(a-c)分之(a+c)=(b-d)分之(b+d)
过期作废 好像是相似比例题
2c/(a-c)=2d/(b-d),所以(a+c)/(a-c)=(b+d)/(b-d)
这里是为什么?
答
因为b/a=d/c,所以a/c=b/d,所以(a-c)/c=(b-d)/d,所以2c/(a-c)=2d/(b-d),所以(a+c)/(a-c)=(b+d)/(b-d)