已知a分之b=c分之b(b±d≠0).求证a+c分之a-c=b+d分之b-d.

问题描述:

已知a分之b=c分之b(b±d≠0).求证a+c分之a-c=b+d分之b-d.

证明:∵  a/b=c/d∴  a/c=b/d(更比性质)∴  (a-c)/c=(b-d)/d  ⑴(a+c)/c=(b+d)/d  ⑵ (合比性质)   ∴   ⑴÷⑵得(a-c)/(a+c)=(b-d)/(b+d)