已知函数f(x)=2cos2(平方)x+2根号3sinxcosx+a且f(π/6)=41求a的值 2当—π/4≤x≤π/3时,求f(X)的值域
问题描述:
已知函数f(x)=2cos2(平方)x+2根号3sinxcosx+a且f(π/6)=4
1求a的值 2当—π/4≤x≤π/3时,求f(X)的值域
答
y=cos2x+√3sin2x+a+1=2sin(2x+π/6)+a+1
1、f(π/6)=4,以x=π/6代入,得:a=1;======>>>>> f(x)=2sin(2x+π/6)+2
2、当-π/4≤x≤π/3时,-π/3≤2x+π/6≤5π/6,则值域是[2-√3,4]
答
f(x)=2(cosx)^2+2√3sinxcosx+a
=√3sin2x+cos2x+1+a
=2sin(2x+π/6)+1+a
(1)
f(π/6)=4
f(π/6)=2sin(2*π/6+π/6)+1+a=2+1+a=4
所以a=1
(2)
f(x)=2sin(2x+π/6)+2
-π/4≤x≤π/3
-π/3≤2x+π/6≤5π/6
所以-√3≤2sin(2x+π/6)≤2
所以2-√3≤f(x)≤4
故值域是[2-√3,4]
如果不懂,请Hi我,祝学习愉快!