已知,SINα=-3/5且α为第3象限,求(1)COS(π/6-α) (2)sin2α (3)COS2αRT

问题描述:

已知,SINα=-3/5且α为第3象限,求(1)COS(π/6-α) (2)sin2α (3)COS2α
RT

cosα=±√[1-(sinα)^2]=±4/5
∵α为第3象限
∴cosα=-4/5
(1)cos(π/6-α)=cos(π/6)cosα + sin(π/6)sinα
=(√3/2)×(-4/5) + (1/2)×(-3/5)
=(-4√3 - 3)/10
(2)sin2α=2sinαcosα=2×(-3/5)×(-4/5)=24/25
(3)cos2α=1 - 2(sinα)^2 =1 - 2×(-3/5)^2 =1 - (18/25)=7/25

因为SINα=-3/5且α为第3象限
cosα=-4/5
(1)COS(π/6-α)=sin(π/3+α)
=sinπ/3*cosα+cosπ/3*sinα
=-√3/2*4/5-1/2*3/5
=-(4√3+3)/10
(2)sin2α=2sinacosa=24/25
(3)COS2α=
=2cos²α-1=2*16/25-1
=7/25

SINα=-3/5 ,cosa=-4/5
(1)COS(π/6-α)=√3/2cosa+1/2sina
=-2√3/5-3/10
(2)sin2α=2sinacosa=24/25
(3)COS2α=1-2sin^2a=16/25

因为SINα=-3/5且α为第3象限
所以cosα=-4/5
(1)COS(π/6-α)
=COSπ/6*cosα+sinπ/6*sinα
=-√3/2*4/5-1/2*3/5
=-(4√3+3)/10
2)
sin2α =2cosαsinα=24/25
3)COS2α
=cos²α-sin²α
=16/25-9/25
=7/25