f(x)=-2√3sin^2x+sin2x+√3
问题描述:
f(x)=-2√3sin^2x+sin2x+√3
求函数f(x)的最小正周期和最小值
答
f(x)=-2√3sin^2x+sin2x+√3
=-2根号3*1/2(1-cos2x)+sin2x+根号3
=根号3cos2x+sin2x
=2(根号3/2cos2x+1/2sin2x)
=2sin(pai/3+2x)
所以最小周期是:
2pai/2=pai
最小值是:
当sin(pai/3+2x)=-1
f(x)min=-2