已知双曲线C1:X^2/a^2-Y^2/b^2=1的右焦点F为抛物线C2:y^2=2px的焦点,点p为双曲线C1与抛物线C2的焦点若PF与x轴垂直,则双曲线C1的离心率是

问题描述:

已知双曲线C1:X^2/a^2-Y^2/b^2=1的右焦点F为抛物线C2:y^2=2px的焦点,点p为双曲线C1与抛物线C2的焦点
若PF与x轴垂直,则双曲线C1的离心率是

抛物线C2:y^2=2px的焦点F(p/2,0)点p为双曲线C1与抛物线C2的交点,PF与x轴垂直,那么设P(p/2,m)则m^2=2p*p/2=p^2,|PF|=|m|=p双曲线的左焦点F'(-p/2,0) c=p/2,2c=|FF'|=p根据勾股定理:PF'|=√(|FF'|²+|PF|²)...