lim(n->∞) n^2 [x^(1/n)-x^(1/n+1)]

问题描述:

lim(n->∞) n^2 [x^(1/n)-x^(1/n+1)]
答案是lnx
没弄错。原题是x开n次方 x开n+1次方,
没看懂

哈哈
把x看成常量
1/n看作x1,1/(n+1)看作x2
n^2 [x^(1/n)-x^(1/n+1)]=[(n+1)/n][1/n-1/(n+1)]*[x^(1/n)-x^(1/n+1)]
[1/n-1/(n+1)]*[x^(1/n)-x^(1/n+1)]为a^x在0处的导数
即得答案是lnx