数列题:设数列{An}的n项和Sn=n^2-16n-6,求数列{│An│}的前n项和Tn的求和公式

问题描述:

数列题:设数列{An}的n项和Sn=n^2-16n-6,求数列{│An│}的前n项和Tn的求和公式

由Sn=n^2-16n-6,得S(n-1)=(n-1)^2-16(n-1)-6,An=Sn-S(n-1)=2n-17,
当n<=8时,|An|=-An=17-2n,可算出当n=8时,T8=(1+15)*8/2=64,
当n<=8时,|An|是以15为首项,-2为公差的等差数列,Tn=[15+15-2(n-1)]/2*n=16n-n^2,这些都比较好算,关键在于当n>=9时,此时|An|的前八项之和已得出为64,|An|的后n-8项是以1为首项,2为公差的等差数列,后n-8项的和可表示为[1+2(n-8-1)]*(n-8)/2=n^2+16.5n+136,而Tn=n^2+16.5n+200.
综上所述当n<=8时,Tn=16n-n^2,当n>=9时Tn=n^2+16.5n+200.