已知数列{an},若a1=14,an+1=an−2/3(n∈N*),则使an•an+2<0成立的n的值是_.

问题描述:

已知数列{an},若a1=14,an+1an

2
3
(n∈N*),则使an•an+2<0成立的n的值是______.

∵a1=14,an+1=an−23(n∈N*),∴数列{an}是首项为14,公差为-23的等差数列,∴an=14+(n−1)×(−23)=-23n+443,∴an•an+2=(-23n+443)[-23(n+2)+443]=49n2−1689n+17609,∵an•an+2<0,∴49n2−1689n+17609...