椭圆(x方比16)+(y方比4)=1上的点到直线x+2y-√2的最大距离是
问题描述:
椭圆(x方比16)+(y方比4)=1上的点到直线x+2y-√2的最大距离是
答
设x=4cosθ,y=2sinθ
则椭圆x^2/16+y^2/4=1上的点到直线x+2y-√2=0的距离为:
d=|4 cosθ+4 sinθ-√2|/√5
=|4√2sin(θ+π/4)- √2|/√5
≤|-4√2- √2|/√5
=√10
所求最大距离=√10