正方形ABCD中,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α

问题描述:

正方形ABCD中,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α
用等式表示线段AP、AB、CP之间的数量关系.

tanα = DQ/AD = 1/2.所以,tan(2α) = 2(1/2) / (1 - 1/4) = 4/3.过P作平行于BC的线交AB于M,则tan(2α) = PM/AM.再注意到PM = BC = AB,AM = AB - MB = AB - CP,于是AB / (AB-CP) = 4/3.所以MB = CP = AB/4.再根据AM ...