已知二次函数y=x2+bx+c的图象过点A(-3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是-2. (1)求抛物线的解析式; (2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

问题描述:

已知二次函数y=x2+bx+c的图象过点A(-3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是-2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

(1)将A(-3,0),B(1,0)代入y=x2+bx+c,得9-3b+c=01+b+c=0,解得b=2c=-3∴y=x2+2x-3;(2)∵y=x2+2x-3=(x+1)2-4∴对称轴x=-1,又∵A,B关于对称轴对称,∴连接BD与对称轴的交点即为所求P点.过D作DF⊥x轴于...