(n/(n+1))^n当n趋向于无穷时的极限
问题描述:
(n/(n+1))^n当n趋向于无穷时的极限
答
y=(n/(n+1))^nlny=nln[n/(n+1)]=ln[n/(n+1)]/(1/n)0/0型,用洛比达法则n/(n+1)=1-1//(n+1)所以分子求导=1/[n/(n+1)]*[1-1/(n+1)]'=(n+1)/n*1/(n+1)^2=1/[n(n+1)]分母求导=-1/n^2所以是-n/(n+1),极限是-1即lny极限是-1...