【高中数学】已知数列{an}是首项为a1= 1/4 ,公比q= 1/4 的等比数列,设数列{bn}满足bn+2=3log 1/4 an(n∈N×) (1)求数列{an+bn}的前n项和Sn; (2)若Cn满足cn=an乘bn,若cn≤ 1
【高中数学】已知数列{an}是首项为a1= 1/4 ,公比q= 1/4 的等比数列,设数列{bn}满足bn+2=3log 1/4 an(n∈N×) (1)求数列{an+bn}的前n项和Sn; (2)若Cn满足cn=an乘bn,若cn≤ 1/4 m2+m-1对一切正整数n恒成立,求实数m的取值范围.
(1)由题意,可得 an=(1/4)^n;
那么: bn+2=3*log(1/4)an=3n;
所以: bn=3n-2,为等差数列;
(2)由条件Cn= an*bn得到:
Cn= (1/4)^n*(3n-2)=3n*(1/4)^n-2*(1/4)^n
记Cn的前n项和为Sn;
那么: Sn=3[1/4+2*(1/4)^2+……+n*(1/4)^n]-2*(1/4+(1/4)^2+……+(1/4)^n);
记Pn=1/4+2*(1/4)^2+……+n*(1/4)^n; --------(1)
则有: 1/4*Pn=(1/4)^2+2*(1/4)^3+……+n*(1/4)^(n+1); ------(2)
(1)-(2)得到:
3/4 Pn=1/4+(1/4)^2+(1/4)^3+……+(1/4)^n-n*(1/4)^(n+1) = 1/3*(1-(1/4)^n)- n*(1/4)^(n+1)
所以Sn可变形为:
Sn=3[1/3*(1-(1/4)^n)- n*(1/4)^(n+1)]-2*[1/3*(1-(1/4)^n)]
=1/3*[1-(1/4)^n]-3n*(1/4)^(n+1);看题目...(1)由题意知,an=(
1
4
)n.
∵bn+2=3log
1
4
an,b1+2=3log
1
4
a1
∴b1=1
∴bn+1-bn=3log
1
4
an+1=3log
1
4
an=3log
1
4
an+1
a n
=3log
1
4
q=3
∴数列{bn}是首项为1,公差为3的等差数列.
(2)由(1)知,an=(
1
4
)n.bn=3n-2
∴Cn=(3n-2)×(
1
4
)n.
∴Sn=1×
1
4
+4×(
1
4
)2+…+(3n-2)×(
1
4
)n,
于是
1
4
Sn=1×(
1
4
)2+4×(
1
4
)3+…(3n-2)×(
1
4
)n+1,
两式相减得
3
4
Sn=
1
4
+3×[(
1
4
)2+(
1
4
)3+…+(
1
4
)n)-(3n-2)×(
1
4
)n+1,
=
1
2
-(3n-2)×(
1
4
)n+1,
∴Sn=
2
3
-
12n+8
3
×(
1
4
)n+1
(3)∵Cn+1-Cn=(3n+1)×(
1
4
)n+1-(3n-2)×(
1
4
)n=9(1-n)×(
1
4
)n+1,
∴当n=1时,C2=C1=
1
4
当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn
∴当n=1时,Cn取最大值是
1
4
又Cn≤
1
4
m2+m-1
∴
1
4
m2+m-1≥
1
4
即m2+4m-5≥0解得m≥1或m≤-5.
望采纳兄弟,题目和答案...你看看(1)由题意,可得
an=(1/4)^n;
那么:
bn+2=3*log(1/4)an=3n;
所以:
bn=3n-2,为等差数列;
(2)由条件Cn= an*bn得到:
Cn= (1/4)^n*(3n-2)=3n*(1/4)^n-2*(1/4)^n
记Cn的前n项和为Sn;那么:
Sn=3[1/4+2*(1/4)^2+……+n*(1/4)^n]-2*(1/4+(1/4)^2+……+(1/4)^n);
记Pn=1/4+2*(1/4)^2+……+n*(1/4)^n; --------(1)
则有:
1/4*Pn=(1/4)^2+2*(1/4)^3+……+n*(1/4)^(n+1); ------(2)
(1)-(2)得到:
3/4 Pn=1/4+(1/4)^2+(1/4)^3+……+(1/4)^n-n*(1/4)^(n+1)
= 1/3*(1-(1/4)^n)- n*(1/4)^(n+1)
所以Sn可变形为:
Sn=3[1/3*(1-(1/4)^n)- n*(1/4)^(n+1)]-2*[1/3*(1-(1/4)^n)]
=1/3*[1-(1/4)^n]-3n*(1/4)^(n+1);望采纳