在△ABC中,角A,B,C所对的边分别为a、b、c,acosB+bcosA=2ccosC. (Ⅰ)求内角C; (Ⅱ)若a=3,c=7,求b.
问题描述:
在△ABC中,角A,B,C所对的边分别为a、b、c,acosB+bcosA=2ccosC.
(Ⅰ)求内角C;
(Ⅱ)若a=3,c=
,求b.
7
答
(Ⅰ)∵bcosA+acosB=2ccosC,①由正弦定理知,b=2RsinB,a=2RsinA,c=2RsinC,②(2分)将②式代入①式,得2sinBcosA+2sinAcosB=4sinCcosC,化简,得sin(A+B)=sinC=2sinCcosC.(5分)∵sinC≠0,∴12,∴C=π3...