设f(x)=e^(-x) *ln(2-x) + (1+3x^2)^(1/2),求f'(x)
问题描述:
设f(x)=e^(-x) *ln(2-x) + (1+3x^2)^(1/2),求f'(x)
答
复合函数求导:f'(x)=[e^(-x) *ln(2-x)]'+ [(1+3x^2)^(1/2)]'=[e^(-x)]'*ln(2-x)+e^(-x)*[ln(2-x)]'+[(1+3x^2)^(1/2)]'=-e^(-x)*ln(2-x)-e^(-x)*(1/(2-x))+(1/2)(1+3x^2)^(-1/2)*6x原理是设f(x)=g[p(x)]则f'(x)=g'[p...