已知实数a,b,c,d,e满足a+b+c+d+e=8.a2+b2+c2+d2+e2=16,试确定e的最大值.
问题描述:
已知实数a,b,c,d,e满足a+b+c+d+e=8.a2+b2+c2+d2+e2=16,试确定e的最大值.
答
根据已知条件a+b+c+d=8−ea2+b2+c2+d2=16−e2,利用柯西不等式得(a2+b2+c2+d2)(12+12+12+12)≥(a+b+c+d)2,∴(16-e2)•4≥(8-e)2,化简得5e2-16e≤0,解之得0≤e≤165.因此可得:当且仅当a=b=c=d=65时...
答案解析:根据柯西不等式,构造出(a2+b2+c2+d2)(12+12+12+12)≥(a+b+c+d)2,结合已知条件建立关于e的二次不等式,解之即可得到实数e的最大值.
考试点:柯西不等式.
知识点:本题给出已知等式,求实数e的最大值.着重考查了利用柯西不等式求最值,考查了一元二次不等式的解法,属于中档题.