已知函数f(x)=2(sinx/2)^2+cos(x-π/3)

问题描述:

已知函数f(x)=2(sinx/2)^2+cos(x-π/3)
1)求函数的最大值及单调增区间

f(x)=2sin²x/2+cos(x-π/3)
=1-cosx+cosxcosπ/3+sinxsinπ/3
=1-cos(x+π/3)
所以f(x)的最大值是2即当cos(x+π/3)=-1时.
其单调增区间是2kπ-π/3≤x≥2kπ+2π/3