已知函数f(x)=sin^2x+2√3sinxcosx+sin(x+π/4)sin(x-π/4),x属于R.

问题描述:

已知函数f(x)=sin^2x+2√3sinxcosx+sin(x+π/4)sin(x-π/4),x属于R.
(1)求f(x)的最小正周期和值域.
(2)若x=xo(0≤xo≥π/2)为f(x)的一个零点,求sin2xo的值

(1)原式=sin^2x+根号3sin2x+1/2(cos^2x-sin^2x)
=1/2+根号3sin2x
T=2派/2=1
sin2x属于【-1,1】根号3sin2x属于【-根3,根3】 fx属于【-根3+1/2,根3+1/2】
(2)由第一问可知fx=根号3sin2x+1/2
所以根号3sin2x+1/2=0
根据范围解得sin2x=-根号3/2
我觉得我做得挺对的.辛辛苦苦打得呢.原式=sin^2x+根号3sin2x+1/2(cos^2x-sin^2x)
=1/2+根号3sin2x怎么等过来的.......o_O
详细过程写出来就采纳你,毕竟,我就这个不懂.....原式=sin^2x+根号3sin2x+1/2(cos^2x-sin^2x)

=sin^2x+根号3sin2x+1/2cos^2x-1/2sin^2x
=1/2sin^2x+1/2cos^2x+根号3sin2x
(cos^2x+sin^2x=1)
=1/2(cos^2x+sin^2x)+根号3sin2x
==1/2+根号3sin2x

看懂?