已知数列{an}的前n项和为sn,且sn=2n^2+n,n∈N*,数列{bn}满足an=4倍的以2为底(bn)的对数+3,n∈N*
问题描述:
已知数列{an}的前n项和为sn,且sn=2n^2+n,n∈N*,数列{bn}满足an=4倍的以2为底(bn)的对数+3,n∈N*
答
an=4n-1bn=2^(n-1)tn=an·bn=(4n-1)2^(n-1)2tn=(4n-1)2^n t(n-1)=(4n-5)2^(n-2) 2 t(n-1)=(4n-5)2^(n-1)t(n-2)=(4n-9)2^(n-3) 2 t(n-2)=(4n-9)2^(n-2) ..t2=7·212t2=7·22t1=3·2o2t1=3·21错位相减得Tn=(4n-1)2^n-4(2^(n-1)+2^(n-2)+2^(n-3)+.+21)-3·2o=(4n-1)2^n-4·(2^n-2)-3·2o=(4n-5)2^n+5