用数学归纳法证明下列等式cosx/2*cosx/4*cosx/8…cosx/2^n =sinx/(2^n*sinx/(2^n))

问题描述:

用数学归纳法证明下列等式
cosx/2*cosx/4*cosx/8…cosx/2^n =sinx/(2^n*sinx/(2^n))

n=1略
假设n=k时成立,k≥1
即cosx/2*cosx/4*cosx/8…cosx/2^k =sinx/(2^k*sinx/(2^k))
则n=k+1时
cosx/2*cosx/4*cosx/8…cosx/2^k*cosx/2^(k+1)=sinx/(2^k*sinx/(2^n))*cosx/2^(k+1)
=sinx/[2^k*2sinx/2^(k+1)*cosx/2^(k+1)]*cosx/2^(k+1)
=sinx/[2^(k+1)*2sinx/2^(k+1)]
综上
cosx/2*cosx/4*cosx/8…cosx/2^n =sinx/(2^n*sinx/(2^n))