设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=kA
问题描述:
设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=kA
答
证明:(1) 因为r(A)=1
所以 A 有一个非零列向量α,且其余列向量都是α的倍数
(事实上,α是A的列向量组的一个极大无关组)
记α=(a1,a2,...,an)'
则 A = (b1α,b2α,...,bnα) 某个ki=1.
= α(b1,b2,...,bn)
记 β = (b1,b2,...,bn)'
则 A = αβ'.
(2)
所以 A^2 = (αβ')(αβ')=α(β'α)β'=(β'α)αβ'=(β'α)A.
令 k = β'α
则 A^2=kA.
注:β'α 是两个向量的内积,是一个数.