已知直线y=−(n+1)n+2x+1n+2(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012=______.
问题描述:
已知直线y=
x+−(n+1) n+2
(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012=______. 1 n+2
答
令x=0,则y=
,1 n+2
令y=0,则-
x+n+1 n+2
=0,1 n+2
解得x=
,1 n+1
所以,Sn=
•1 2
•1 n+1
=1 n+2
(1 2
-1 n+1
),1 n+2
所以,S1+S2+S3+…+S2012=
(1 2
-1 2
+1 3
-1 3
+1 4
-1 4
+…+1 5
-1 2013
)=1 2014
(1 2
-1 2
)=1 2014
.503 2014
故答案为:
.503 2014
答案解析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出Sn,再利用拆项法整理求解即可.
考试点:一次函数图象上点的坐标特征.
知识点:本题考查的是一次函数图象上点的坐标特点,表示出Sn,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.