圆锥曲线的最值问题(用极坐标求解)已知椭圆中心为O,长轴、短轴分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值.
问题描述:
圆锥曲线的最值问题(用极坐标求解)
已知椭圆中心为O,长轴、短轴分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.
求△AOB面积的最大值和最小值.
答
设OA长为r1,OB长为r2,OA角为?,则A,B的坐标分别为(r1cos?,r1sin?),(-r2sin?,r2cos?).分别代入椭圆方程,两式相加得:1/(r1)^2+1/(r2)^2=1/a^2+1/b^2 为定值 .欲求AOB的面积的极值,就是使r1*r2取最值,即使1/r1r2取最值,...