黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?

问题描述:

黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?

设四座车租x辆,十一座车租y辆,则有:

4x+11y=70
70×60+60x+11y×10≤5000

将4x+11y=70变形为:4x=70-11y,代入70×60+60x+11y×10≤5000,可得:
70×60+15(70-11y)+11y×10≤5000,
解得y≥
50
11

又∵x=
70−11y
4
≥0,
∴y≤
70
11

故y=5,6.
当y=5时,x=
15
4
(不合题意舍去).
当y=6时,x=1.
答:四座车租1辆,十一座车租6辆.
答案解析:设四座车租x辆,十一座车租y辆,先根据“共有70名职员”作为相等关系列出x,y的方程,再根据“公司职工正好坐满每辆车且总费用不超过5000元”作为不等关系列不等式,求x,y的整数解即可.注意求得的解要代入实际问题中检验.
考试点:一元一次不等式组的应用;二元一次方程组的应用.

知识点:本题考查二元一次方程组与一元一次不等式的综合应用,将现实生活中的事件与数学思想联系起来,列出关系式即可求解.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系式.