一直m(m+3)=1 mn= -1,求n²+3n+9的直,
问题描述:
一直m(m+3)=1 mn= -1,求n²+3n+9的直,
答
m=-1/n
m(m+3)=1
m^2+3m-1=o
(1/n)^2-3(1/n)-1=0
乘以n^2
1-3n-n^2=0
3n+n^2=1
n^2+3n+9=10