在第一卦限内做椭球面x^2+y^2/4+z^2/4=1的切平面,使之与三个坐标面围成的四面体体积最小,在第一卦限内做椭球面x^2+y^2/4+z^2/4=1的切平面,使之与三个坐标面围成的四面体体积最小,求切点坐标和最小体积.
问题描述:
在第一卦限内做椭球面x^2+y^2/4+z^2/4=1的切平面,使之与三个坐标面围成的四面体体积最小,
在第一卦限内做椭球面x^2+y^2/4+z^2/4=1的切平面,使之与三个坐标面围成的四面体体积最小,求切点坐标和最小体积.
答