如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=______.
问题描述:
如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=______.
答
∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥AE,∴∠ABD+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,∠ABD=∠CAE∠ADB=∠CEAAB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE=CE+DE=2+4=6cm,∴BD=6...
答案解析:利用同角的余角相等求出∠ABD=∠CAE,再利用“角角边”证明△ABD和△CAE全等,根据全等三角形对应边相等可得BD=AE,AD=CE,然后计算即可得解.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定与性质,利用同角的余角相等求出三角形全等的条件是解题的关键,也是本题的难点.