如图,已知⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE.

问题描述:

如图,已知⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE.


答案解析:首先连接BE,再根据直角三角形的性质可得∠A+∠ACD=90°,根据圆周角定理可得∠E+∠ECB=90°,∠A=∠E,进而可证明∠ACD=∠BCE.
考试点:圆周角定理
知识点:此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.