如图,已知:⊙O为△ABC的外接圆,OE是⊙O的半径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE

问题描述:

如图,已知:⊙O为△ABC的外接圆,OE是⊙O的半径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE

证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.满意的话请及时点下采纳哟.: