已知数列{an}的通项公式为an=log2(n+1/n+2)(n∈N*),设其前n项和为Sn,则使Sn

问题描述:

已知数列{an}的通项公式为an=log2(n+1/n+2)(n∈N*),设其前n项和为Sn,则使Sn

a1=log2 2/3 a2=log2 3/4.
a1+a2+...an=log2 (2/3)(3/4)(4/5)...(n+1/n+2)
=log2 2/(n+2)=Sn
sn