计算不定积分∫(2x+3)^3dx
问题描述:
计算不定积分∫(2x+3)^3dx
答
∫(2x+3)^3dx
=1/2∫(2x+3)^3d(2x+3)
=(2x+3)^4/8
答
∫(2x+3)^3dx
=1/2∫(2x+3)^3d(2x+3)
=(1/2)*(2x+3)^4/4+C
=(2x+3)^4/8+C
C是任意常数
答
计算不定积分∫(2x+3)^3dx
∫(2x+3)^3dx
= 1/2 * ∫(2x+3)^3d(2x+3)
= 1/2 * 1/4 * (2x+3)^4 + C
= 1/8 * (2x+3)^4 + C
答
∫(2x+3)^3dx=1/2*∫(2x+3)^3d(2x+3)=1/8*(2x+3)^4