已知函数f(x)=(x^2+1)/(x+1),求函数f(x)的值域
问题描述:
已知函数f(x)=(x^2+1)/(x+1),求函数f(x)的值域
答
y=(x²+1)/(x+1)
x²-xy-y+1=0
Δ=y²-4(-y+1)≥0
y²+4y-4≥0
y²+4y+4≥8
(y+2)²≥8
y≤-2-2√2或y≥-2+2√2
值域为:{y|y≤-2-2√2、y≥-2+2√2}
或表示为:(-∞,-2-2√2]∪[-2+2√2,+∞)
答
f(x)=[(x+1)^2-2(X+1)+1]/(x+1)
=(x+1)-2+1/(x+1) =x-1+1/(x+1)剩下的你应该会了吧