三角形中sin2A+sin2B=4sinAsinB,三角形周长为1,求证三角形为直角三角形 ,求三角形最大面积

问题描述:

三角形中sin2A+sin2B=4sinAsinB,三角形周长为1,求证三角形为直角三角形 ,求三角形最大面积

对原式左边和式化积,右边积式化和差,即有:
2sinCcos(A-B)=2cosC+2cos(A-B)
(sinC-1)cos(A-B)-cosC=0
-(sinC/2-cosC/2)^2cos(A-B)-(cosC/2-sinC/2)(cosC/2+sinC/2)=0
(cosC,/2-sinC/2)[(sinC/2-cosC/2)cos(A-B)-(cosC/2+sinC/2)]=0
(cosC/2-sinC/2)[sinC/2((cos(A-B)-1)-cosC/2(cos(A-B)+1)]=0
在sinC/2((cos(A-B)-1)-cosC/2(cosC/2+1)中,
因为sinC/2>0,(cos(A-B)-1≤0
所以sinC/2((cos(A-B)-1)≤0,
因为cosC/2>0,(cosC/2+1)>0
所以cosC/2(cosC/2+1)>0
所以:sinC/2((cos(A-B)-1)-cosC/2(cosC/2+1)所以,只能cosC/2-sinC/2=0
所以,C=90º

sin2A+sin2B=4sinAsinB
2sinAcosA+2sinBcosB=4sinAsinB
即:sinAcosA+sinBcosB=2sinAsinB
∴ sinA(cosA-sinB)=sinB(sinA-cosB)
∵ sinA,sinB为正
∴ cosA-sinB与sinA-cosB同号,或都为0(***)
(1)C是钝角,则A+B90°-B
∴ sinA>sin(90°-B)=cosB
cosA