若x,y,z均为非负数,且满足x−1=y+12=z−23,则x2+y2+z2可取得的最小值为______.

问题描述:

若x,y,z均为非负数,且满足x−1=

y+1
2
z−2
3
,则x2+y2+z2可取得的最小值为______.

令x-1=

y+1
2
=
z−2
3
=t,
则x=t+1,y=2t-1,z=3t+2,
于是x2+y2+z2=(t+1)2+(2t-1)2+(3t+2)2
=t2+2t+1+4t2+1-4t+9t2+4+12t
=14t2+10t+6,
∵x,y,z均为非负数,
∴x-1≥-1,
y+1
2
1
2
z−2
3
≥-
2
3

∵x-1=
y+1
2
=t,
∴y≥
1
2

∴当t=
1
2
时,其最小值=14×
1
4
+10×
1
2
+6=
29
2

故答案为:
29
2

答案解析:用换元法把x、y、z的值用一个未知数表示出来,再求其最值即可.
考试点:配方法的应用;非负数的性质:偶次方.
知识点:本题考查了配方法的应用及非负数的性质,解题的关键是利用换元法得到有关x、y、z的二次三项式并求最值.