若x,y,z均为非负数,且满足x−1=y+12=z−23,则x2+y2+z2可取得的最小值为______.
问题描述:
若x,y,z均为非负数,且满足x−1=
=y+1 2
,则x2+y2+z2可取得的最小值为______. z−2 3
答
令x-1=
=y+1 2
=t,z−2 3
则x=t+1,y=2t-1,z=3t+2,
于是x2+y2+z2=(t+1)2+(2t-1)2+(3t+2)2
=t2+2t+1+4t2+1-4t+9t2+4+12t
=14t2+10t+6,
∵x,y,z均为非负数,
∴x-1≥-1,
≥y+1 2
,1 2
≥-z−2 3
,2 3
∵x-1=
=t,y+1 2
∴y≥
,1 2
∴当t=
时,其最小值=14×1 2
+10×1 4
+6=1 2
.29 2
故答案为:
.29 2
答案解析:用换元法把x、y、z的值用一个未知数表示出来,再求其最值即可.
考试点:配方法的应用;非负数的性质:偶次方.
知识点:本题考查了配方法的应用及非负数的性质,解题的关键是利用换元法得到有关x、y、z的二次三项式并求最值.