若x-1=2(y+1)=3(z+2),则x2+y2+z2可取得的最小值为( )A. 6B. 417C. 29349D. 8314
问题描述:
若x-1=2(y+1)=3(z+2),则x2+y2+z2可取得的最小值为( )
A. 6
B.
41 7
C.
293 49
D.
83 14
答
设x-1=2(y+1)=3(z+2)=k,
则x2+y2+z2=(k+1)2+(
−1)2+(k 2
−2)2=k 3
k2-49 36
k+61 3
=
(k−49 36
)2+6-6 49
,1 49
当k=
时,x2+y2+z2可取最小值6-6 49
=1 49
,293 49
故最小值为:
.293 49
故选C.
答案解析:设x-1=2(y+1)=3(z+2)=k,把x,y,z用k的代数式表示,则x2+y2+z2转化为关于k的二次三项式,运用配方法求其最小值.
考试点:二次函数的最值.
知识点:本题考查了二次函数最值,难度适中,关键是设x-1=2(y+1)=3(z+2)=k.