如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为______.

问题描述:

如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为______.

连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,...
答案解析:设AD=x,由切线长定理得AF=x,根据题意可得四边形OECF为正方形,则CE=CF=2,BD=BE=3,在直角三角形ABC中,利用勾股定理求出x,然后求其周长.
考试点:切线长定理;勾股定理.
知识点:本题考查了勾股定理和切线长定理,常把圆的问题转化成三角形的问题来解决.