a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,求a/x+c/y的值?xy不等于0
问题描述:
a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,求a/x+c/y的值?
xy不等于0
答
依题意知,ac=b^2, 2x=a+b,2y=b+c,
设等比数列a,b,c的公比为q, 则b/a=q, b/c=1/q,
x/a=1/2(a+b)/a=1/2(1+b/a)=(1+q)/2, a/x=2/(1+q),
y/c=1/2(b+c)/c=1/2(b/c+1)=(1+q)/2q, c/y=2q/(1+q),
故a/x+c/y=2/(1+q)+2q/(1+q)=2。
答
假设 a/b=b/c=k 则 b=ck,a=ck^2因为a,x,b成等差数列,b,y,c也成等差数列,所以x=(a+b)/2 y=(b+c)/2所以a/x+c/y=2a/(a+b)+2c/(b+c)=2ck^2/ (ck^2+ck)+2c/(ck+c)=2ck^2/(ck)(k+1) +2c/c(k+1)=2k/(k+1)+ 2/(k+1)=(2k+2)/(...