已知抛物线y=ax平方+bx+c过点(1,1)且在(2,-1)处的切线斜率为1
问题描述:
已知抛物线y=ax平方+bx+c过点(1,1)且在(2,-1)处的切线斜率为1
答
有已知条件得:抛物线过两个点a+b+c=1, 4a+2b+c=-1 ,求导后切线斜率=4a+b=1
求得a=3 , b=-11 , c=9 ,y=3x^2-11x+9
答
对y求导数y‘=2ax+b,
由2a=1,a=0.5
过(2,-1)代入b=-3
过(1,1),代入c=3.5
答
y'=2ax+b,4a+b=1;
1=a+b+c,-1=4a+2b+c,
a=3,b=-11,c=9
解析式为:y=3x^2-11x+9
答
过点(1,1): a + b + c = 1 (1)
过点(2, -1): 4a + 2b + c = -1 (2)
y' = 2ax + b
x=2, y' = 4a + b = 1 (3)
(1)(2)(3): a = 3, b = -11, c = 9
y = 3x^2 -11x +9
答
抛物线:y=ax^2+bx+c
求导:y'=2ax+b
将(1,1),(2,-1)代入抛物线方程,得
a+b+c=1
4a+2b+c=-1
又在点(2,-1)处的切线斜率为1 ,即x=2,y‘=1,得
4a+b=1
解方程组:a=3,b=-11,c=9
抛物线:y=3x^2-11x+9