如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点E,若∠A=40°,求∠E的度数
问题描述:
如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点E,若∠A=40°,求∠E的度数
答
∵BE,CE分别是△ABC的内角和外角的平分线
∴∠DBE=1/2∠ABC
∠DCE=1/2∠ACD
∵∠ACD=∠ABC+∠A
∠DCE=∠DBE+∠E
∴∠E=∠DCE-∠DBE=1/2∠ACD-1/2∠ABC=1/2(∠ACD-∠ABC)
又∵∠ACD=∠ABC+∠A
∴∠E=1/2(∠ABC+∠A-∠ABC)=1/2∠A=1/2×40°=20°