等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?

问题描述:

等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?

BE=CF,理由是:连接OE,OF,∵DE垂直平分OB∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),同理OF=CF,∴∠EBO=∠BOE,∠FCO=∠FOC,∵等边三角形ABC中,∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)...
答案解析:连接OE,OF构建等腰三角形BOE和CFO,利用等腰三角形的“三线合一”推知的性质BE=OE、OF=CF,然后等边三角形ABC中,根据等边三角形的三个内角都是60°的性质、角平分线的性质证得△OEF是等边三角形(有两个内角60°的三角形是等边三角形);最后由等边三角形OEF的三条边都相等、等量代换即可得出BE=EF=FC
考试点:线段垂直平分线的性质;等边三角形的性质.


知识点:本题综合考查了等边三角形的性质、线段垂直平分线的性质.解答该题时,充分利用了等腰三角形的底边上的高线、中线、对角的角平分线三线合一的特性.