函数f(x)=(a+lnx)/x (a∈R)的极大值等于?已知函数f(x)=(a+lnx)/x (a∈R),(1)求函数f(x)的极值?(2)若a>1,求证:存在x0属于(0,+无穷大),使得f(x0)>a?谢谢
函数f(x)=(a+lnx)/x (a∈R)的极大值等于?
已知函数f(x)=(a+lnx)/x (a∈R),
(1)求函数f(x)的极值?
(2)若a>1,求证:存在x0属于(0,+无穷大),使得f(x0)>a?
谢谢
∵f(x)=(a+lnx)/x (a∈R)
∴f '(x)=【1-(a+lnx)】/x^2
令f '(x)=0 得 【1-(a+lnx)】/x^2=0
则1-(a+lnx)=0
x=e^(1-a)
∴当 x=e^(1-a) 时
函数取得极小值f(min)=f[e^(1-a) ]=[a+lne^(1-a)]/e^(1-a)
=1/e^(1-a)=e^(a-1)
∵ f(x)=(a+lnx)/x (a∈R)
∴定义域为 x∈(0,+∞)
令g(x0)=f(x0)-a
∴ g(x0)=(a+lnx0)/x0-a , x0∈(0,+∞)
∴ g ’(x0)=【1-(a+lnx0)】/x0^2
令g ’(x0)=0 得1-(a+lnx0)=0
∴ x0=e^(1-a)>0
当x0=e^(1-a)时,在x0∈(0,+∞)上可取得最小值
g【e^(1-a)】=e^(a-1)
又∵a>1
∴e^(a-1)>0
则g(x0)=f(x0)-a>0
∴ f(x0)>a
求导。
(1)∵函数f(x)=(a+lnx)/x (a∈R)∴对函数求导得:f '(x)=【1-(a+lnx)】/x^2令f '(x)=0 得 【1-(a+lnx)】/x^2=0即 1-(a+lnx)=0x=e^(1-a)∴当 x=e^(1-a) 时函数取得极小值f(x)=f[e^(1-a) ]=[a+lne^(...