上数学课时,老师提出了一个问题:“一个奇数的平方减1,结果是怎样的数?”.请你解答这个问题.

问题描述:

上数学课时,老师提出了一个问题:“一个奇数的平方减1,结果是怎样的数?”.请你解答这个问题.

【方法一】:当奇数为1、3、5、时,这个数为0、8、24、,(2分)所以这个数应是8的倍数.(4分)然后转入代数化,参照方法二给分.(注:用-至两个数验算,未回答不给分,回答是整数、偶数给1分,回答是4的倍数、8的...
答案解析:设奇数为2n+1(n为整数),根据题意可列式为(2n+1)2-1=4n2+4n=4(n2+n)=4n(n+1),因为n为整数,所以n与n+1中必有一个偶数,n(n+1)是偶数(或者说是2的倍数),所以结果是8的倍数.
考试点:因式分解的应用.


知识点:主要考查了利用因式分解的方法解决实际问题.要先分解因式并根据奇数的实际意义来求解.