已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),f(x)=a*b+1. 1.求f(x)的解析式和它的最小正周期 2.求函数f(x)在x∈[0,π/2]的值域
问题描述:
已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),f(x)=a*b+1. 1.求f(x)的解析式和它的最小正周期 2.求函数f(x)在x∈[0,π/2]的值域
答
ab=(cosx+sinx)^2-2sin^2x=sin2x+1-2sin^2x=sin2x+cos2x
=√2sin(x+π/4)
∴f(x)=√2sin(x+π/4)+1
T=2π/1=2π
(Ⅱ)∵x∈[0,π/2]
∴x+π/4∈[π/4,3π/4]
∴f(x)min=√2×√2/2+1=2
f(x)max=√2×1+1=1+√2